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LIQUID CRYSTALS, 1992, VOL. 12, No. 1, 95-126 

Stability of a nematic mesophase with internal degrees of freedom 
Analysis in terms of catastrophe theory 

by Vl. K. PERSHIN* and V. A. KONOPLEV 
Ural Polytechnic Institute, 620002 Sverdlovsk K-2, U.S.S.R. 

(Received 15 October 1990; accepted 9 November 1991) 

A model of a nematic mesophase with internal degrees of freedom is developed 
using the variational principle by means of catastrophe theory methods. It is shown 
that the free energy of the model being a function of two order and three control 
parameters is represented in the form of the superposition of local potentials 
corresponding to elementary fold and swallow tail catastrophes according to 
Thom’s classification. All of the physical conclusions obtained are a consequence of 
this result. By means of catastrophe theory a bifurcation set (separatrix) of the model 
is built which divides the control parameters namely the effective molecular length 
(E),  their rigidity ( y )  and the dimensionless temperature ( t )  of the system space into six 
non-intersecting parts each parametrizing qualitatively similar potentials. The 
lower and upper temperature boundaries of the isotropic liquid and orientationally 
ordered states, respectively, are determined as sub-sets of the bifurcation set in the 
control parameter space. On the basis of numerical analysis and catastrophe theory 
the Maxwell set and all the fundamentally different phase diagrams of the model in 
coordinates ‘t-7, t-6, E-y’ have been constructed. It is shown that triple and terminal 
critical points can be realized in the phase diagrams. Physical critical manifolds of 
the model in variables E - ~ - ( P ~ )  and ~-7-x are built ( ( P 2 )  and x are orientational 
order and conformational disorder parameters, respectively). Analysis of all of the 
topologically different phase diagrams of the system has been performed. 

1. Introduction 
Liquid crystals occupying an intermediate position between crystalline solids and 

amorphous liquids possess a number of unique physical properties. It is considered [ 11 
that the latter are mainly bound up with orientational ordering of the constituent 
particles which is the prime characteristic of the mesomorphs. However, molecular 
models of the mesophases including orientational degrees of freedom describe just a 
part of the experimental data. Ideas based on the approximation of particles as rigid 
rods have proved to be of little importance for modelling orientationally ordered 
systems formed by conformationally flexible molecules (liquid-crystalline polymers, 
lipids, n-alkanes, cyanobiphenyls, truxenes, etc.) and to describe a number of 
phenomena (the odd-even effect, bounded, induced, reentrant mesomorphism, etc.) 
taking place in such compounds. Information available up to now [2] concerning the 
effect of the structure of the mesogenic molecules on the macroscopic properties and 
thermal stability of mesophases leads to the necessity of accounting for the internal 
degrees of freedom in theories of liquid crystals [3-111. 

Investigation of the mechanism of phase transitions is of particular importance in 
the field of fundamental problems of polymorphism. In this connection there is always 
a freedom of choosing some molecular parameters in the model whose physical sense is 
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96 V1. K. Pershin and V. A. Konoplev 

either not ultimately clear or which vary within rather broad limits. Thus, in the 
standard situation we give them concrete numerical values and solve a numerical 
problem by fitting, at best, the theoretical results to the known experimental ones. 
Of course, such calculations, in themselves, have a certain physical sense. However, for 
many similar cases we fail to establish whether all of the fundamental, qualitatively 
different opportunities of the existence of the structural transitions, built into the 
model, are realized. Because of this, predictive aspects of theoretical calculations are 
essentially restricted. An adequate analysis can only be fulfilled in terms of catastrophe 
theory. 

Investigation of the peculiarities of smooth functions and parametrized families of 
such function is the focus of attention of catastrophe theory. Catastrophes themselves 
are discontinuous changes arising in the form of a sudden response of the system to a 
continuous alteration of the external conditions. Thom [lZ] has called such sharp 
changes catastrophes with the aim of giving the sense of a dramatic alteration of the 
state of the system at its development. The gradient stationary systems described by 
families of smooth potentials Y(x, c) depending on n state variables (order parameters) 
x = (xl,. . . , x,) and r control parameters c = (cl,. . . , c,) are the subject of elementary 
catastrophe theory studies [12-151. The meaning of the functions Y(x, c) is particularly 
clear in thermodynamics. Establishing the correspondence between the thermody- 
namic potential and aparticular type of catastrophe (see later) allows us, at least locally 
in the neighbourhood of potential critical points, to use the already known geometric 
representation of the latter without a detailed analysis. It gives an opportunity to 
construct phase diagrams of a physical system in limited areas of the control space. 
Information about the local structure of the solution of the equilibrium equations and 
that of the phase diagrams is the most valuable for the construction of global phase 
diagrams since it may be used as initial data for a computer problem in situ. 

For the family of functions {Y(x, c)} the majority of points c = (cl,. . . , c,) 
parametrizes functions possessing non-degenerate (or Morse) points only. For such 
points the conditions 

are fulfilled. However, the qualitative global behaviour of the family of functions Y(x, c) 
is completely determined by a set of points co =(cy, .  . . , c,") which parameterize 
functions with degenerate critical points. Such a set {c'} of points for which the 
conditions 

(1) 
are simultaneously fulfilled is called a bifurcation set or a separatrix of the family of 
functions Y(x, c). The separatrix divides a space {c} of control parameters into open 
areas each of which parametrizes functions Y(x, c) of the topologically equivalent 
(qualitatively similar) type. 

In a particular calculation the bifurcation set can be created by proceeding from the 
system (1) consisting of (n + 1) equations and possessing (n + r )  unknown quantities 
(xi, . . . , x,, cl, . . . , c,). Some quantities from the group cl, . . . , c, (their number equals 
min { I ,  n + l}) should be considered as functions given implicitly by the system (1) and 
the remainder from the group (xl, ... x,, cl, ..., c,) (their number is equal to 
[(n + r) --min {r,  (n + l)}]), as independent variables. The result gives a parametric 
representation of a separatrix. 

For physical applications the Maxwell set of a thermodynamic potential is of the 
greatest interest. This is a set of points in control parameter space for which values of 

VY(x, c)=O det [82Y/8xi8yj] #O,  i, j =  1, . . ., n 

VY(x, c)  =0, det [a2Y/axidyj ]  = 0, i ,  j = 1,. . . , n 
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Catastrophe theory of a nematic 97 

the potential coincide in two or more isolated critical points (in local minima for 
physical problems). Discontinuous changes occur in the system when the control 
parameters change so that the global minimum value of the potential function passes 
from one minimum to another. These changes have a qualitative character in physical 
systems only in which the Maxwell rule is valid (for example, it is characteristic for 
thermodynamic systems including mesophases). From a physical point of view such 
changes are nothing other than first order phase transitions. It should be noted that 
qualitative modifications of the potential function type do not occur in this case. 
Second order phase transitions can take place (but not necessarily) at the bifurcation set 
only. For their realization the formation of the deepest minimum of the potential is 
necessary at the bifurcation points. In addition, all of the other minima correspond to 
metastable states and the potential relief structure changes qualitatively. Thus, 
establishing the type of the model's bifurcation set and that of the Maxwell set and also 
of the behaviour of its thermodynamic potential in these sets allows us to determine the 
nature of phase transitions for the physical system and the topology of the phase 
diagrams. Note that beyond catastrophe theory limits the construction of all of the 
fundamentally different phase diagrams of complex multiparametric models is, 
probably, impossible or causal. 

In the present paper the influence of internal degrees of freedom of molecules on the 
nematic mesophase stability and on successive phase transitions occurring in it is 
investigated. With the aim of providing a complete qualitative analysis in terms of 
elementary catastrophe theory (for the number of control parameters r < 5 [12-151) we 
proceed from the model hamiltonian of the pseudospin type considered in [1&23] 
while solving a statistical problem by means of the variation mean field method [24]. 
Section 2 deals with the description of the model of a mesophase with internal degrees 
of freedom and with the derivation of equilibrium equations. The main calculation 
formulae of catastrophes of this model are deduced in & 3,4.1,4.2 and the Appendices. 
A bifurcation and Maxwell set of the system are constructed and topological 
peculiarities of the thermodynamic potential are described in 94.3. All of the 
topologically different two dimensional phase diagrams of the model are considered in 
94.4. A numerical analysis of the model is given in &4.5 and 4.6. Correlations of the 
physical characteristics of the model with the properties of mesogens are discussed in 
9 5. 

2. Description of a model of a mesophase with internal degrees of freedom 
To solve the problem just described the dependence of the interparticle interaction 

on intramolecular changes has to be taken into account. Presuming that together with 
orientational degrees of freedom the constituent molecules also possess internal (for 
example, conformational) degrees of freedom we write the hamiltonian for the system in 
the pseudospin approximation C16-231 

Here N is the number of particles; P2k (cos 6)  is the 2k order Legendre function; dij is the 
angle between the long axes of the i and j particles; v is the number of internal 
(conformational) states of the molecules; quantities n&) being equal to 1 or 0 describe 
the presence or absence of the i particle in the B state so that the equality 

C n,(l,)= 1 
a= 1 

(3) 
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98 V1. K. Pershin and V. A. Konoplev 

is realized. A certain set of molecular configurations { l i }  described by configuration 
energies E(li) corresponds to each conformation [ 17-19]. Values of the interparticle 
interaction described by the parameters Ctb(ij) depend on that in which a,P 
conformational states molecules i and j are located. At low temperatures the particles 
occupy the most ordered conformational states to which a minimum intra- and 
intermolecular interaction corresponds. Henceforth we consider that conformational 
rearrangements occur at the level of individual molecules though in this approach we 
can use a general notion of structural elements without specifying whether it relates to 
central fragments, flexible parts of molecules, to molecules of a liquid crystal as a whole 
or to metastable complexes of particles (clusters) [25]. The most important feature of 
the model is the availability of various internal states in structural elements forming the 
mesophase which differ through the strength of interaction with a local environment. 

To calculate the free energy F of the system we use the variational method [24] 
according to which 

F < F,  = F ,  + ( H - H , ) ,  

where 

F ,  = - kT In Tr exp ( - Ho/kT) 

is a free energy calculated by means of the trial hamiltonian Ho; F,  is a variational free 
energy of the system; the brackets (. . .) indicate a thermodynamic average with the 
hamiltonian 

Here Oi is the angle between the long axis of molecule i and the director; p, h, ( j  = 1,.  . . , v) 
are variational parameters. At the approximation of nearest neighbours (V'$(ij) = c7 
(ii + r), r = 1,. . . , K ;  K is their number) and of the uniaxiality of the molecular ordering 
[l] the variational free energy of one molecule is 

duexp[pP,(u)/kT]-kTln 

1 

The orientational order parameters 
r i  I P i  

characterize the uniaxial order of the constituent particles, and the conformational 
order parameters 

I v  

describe the fraction of molecules in the c1 conformation; the energetic parameters 

z, = exp [ - E(l,)/kT], 
ldn.(lr) = 1) 
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Catastrophe theory of a nematic 99 

depend weakly on temperature [ 17-19]; henceforth they are considered as parameters 
of the problem and are included in equation (5). The condition of a minimum of the 
variational free energy from equation (5) relative to the variational parameters leads to 
the equations 

which, together with equations (5)-(8), allow us to calculate the dependences of the 
thermodynamic averages ( P Z k )  and ( n s )  on the temperature for given values of the 
intra- and intermolecular interaction parameters and, hence, to describe the equilib- 
rium state of the nematic mesophase with internal degrees of freedom. 

3. Potential of the model 
For a qualitative analysis of the model we use an approximation of two 

conformational states (v = 2) 118-211. In this case possible configurations of the 
particles are divided into two sub-sets to each of which the non-folded (nz(li) = 1) and 
folded (nl(li) = 1) conformations are associated as maintaining the geometric ani- 
sotropy. Such a simplification is not too crude for relatively short chain molecules, for 
example, with the number of methylene fragments n < 16-20 and even for long chain 
molecules with repeating structural units. The latter follows from the known 
experimental fact [26,27] that a cooperative interaction exists in groups of 8-10 
repeating methylene units which allows us to consider them qualitatively as integral 
units. 

The approximation of two conformational states should also describe, satis- 
factorily, the cooperative effects of conformational rearrangements occurring in the 
central aromatic fragments if the molecules contain a relatively small number (<4) of 
phenyl groups. In addition, a number of fine phenomena (for example, the odd-even 
effect) are certainly excluded from consideration. 

We take the interrelation between the interparticle interaction parameters to have 
the form 

v,, : v,,: v, = 1 : y : yz,  (O< y < l), (10) 
(subscripts n and fin equation (10) correspond to non-folded and folded conformations, 
respectively) allowing us to proceed to the model which includes two parameters y, V,, 
instead of the three I/.s (a, B= n, f). It is seen from equation (10) that the parameter y 
distinguishes the interaction of molecules in different conformational states. This 
distinction can be essential (y Q 1) for flexible molecules and insignificant (y < 1) for rigid 
molecules. The latter means that the parameter y has the meaning of the effective 
rigidity of the particles. 

Confining ourselves to the first term (k = 1) in the expansion of the hamiltonian from 
equation (2) in the Legendre functions (a model of the Maier-Saupe type [28]) we 
rewrite the free energy in the dimensionless form 

Fv/(NlcV,,) =- "(a, x; E, y, t )  =r - t In Jo(a) + ta(2(P2) + 1)/3 

+ t In (1 - x)+ tR(x, 8)- 1/2(P2>2Q2(x, y) (1 1) 
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100 V1. K. Pershin and V. A. Konoplev 

and equations of state from expression (9) in the form 

The orientational order parameter 

where 

J,(a) = u2m exp (au2) du, (m = 0 , l )  s: 
are the Maier-Saupt integrals and the conformational disorder parameter 

(15) 

are introduced into equations (11) and (12). The parameter x describes the fraction of 
molecules in the folded conformation. In equations (11Hl5) 

R(x; E )  = In [x/( 1 - x)] - E, E = In [zl/zz]. (16) 

Let us note that, according to [17,18], the parameter E is from formulae (12) and (16) is a 
parameter associated with the molecular effective length since it is proportional to the 
number of methylene fragments. 

From the point of view of catastrophe theory [13-151 expression (11) describes a 
family of potential functions with two state variables a, x and three control parameters 
E, y, t. The critical points of the potential Y! are defined by the solutions of equations (12); 
its stability matrix equals 

where ( P 2 ) ' = d ( P 2 ) / d a .  Note that the stability matrix is written in this form because 
of the equilibrium equations (12). There are no fourfold degenerate critical points 
obtained for the condition that all the elements of the matrix from expression (17) 
vanish since the inequalities Q(x, y) #O, (Pz) '  #O, y < 1 are carried out in the model 
under consideration. It indicates that the stability matrix may possess only one 
eigenvalue equal to zero whose existence is provided by the zero value of the 
determinant of the matrix from equation (17) 

and catastrophes with one variable of the A,, type may only correspond to the potential 
from equation (11) [12-141. A bifurcation set of the model is determined by the 
combined solution of equations (12) and (18). 
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Catastrophe theory of a nematic 101 

4. Results 

4.1. Fold catastrophe 
The equations of state from expression (12) give implicit dependences of the 

orientational order ( P 2 )  and conformational disorder x parameters on the dimension- 
less temperature t and on the molecular parameters E and y. The solution 

a* =o, ( (P2)*  =O), (19) 
x* = exp ( E * ) [  1 + exp (&*)I (20) 

is one of the solutions of equations (12) which corresponds to the orientationally 
disordered state. The isotropic liquid phase free energy is 

F,/(NxI/ , , )  = - t In (1 - x), (21) 
where at equilibrium the quantity x satisfies equation (20). The phase transition is 
associated with the long range orientational order loss and is determined by the 
equality of the potentials (11) and (21) when the conditions (12H15) and (19), (20), 
respectively are fulfilled. At the realization of the equality 

t* = (1/5)Q2(x*, Y*), (22) 

the coupling parameters of the model at the point (a*,x*), the stability matrix is 

where 

1’=(1/2)t*/[x*(l -x*)]. (24) 
It follows from equations (22>-(24) that the expansion of the potential (1 1) in a Taylor 
series in variables (a,x) in the neighbourhood of the point (a*,x*) and at fixed 
parameters E, y,  t has the form 

k 
“(a, X; E, y, t) = Y(u*, x*; E ,  y, t) + dx’ + A’x” + $d2 + 1 C u~~x’~u’~ ,  (25) 

k 3 3  i , j = O  
(i + J )  = k 

where the linear transformation of coordinates x’=x-x*, a‘=a is used and the 
coefficients of the Taylor series (25) up to third order are 

(26) 
a’ = t In [x*/(exp (E)( 1 - x*))], 

P’ = (p2 >; [1/3t - 1/2 ( pz >bQ2(X*, r)], 

In these equations the first (P2) ’  and the second ( P 2 ) ”  order parameter derivatives 
over the variable a at the point a=O (according to equation (13)) are (P2)b  
=2/15, ( P 2 ) ;  = 8/(5.7.9). Solving equations (19), (20), (22), (27) we find that coefficients 
a’ and p’ in the degenerate critical point (~*,y*,t*) are zero and the coefficient 
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102 Vl. K. Pershin and V. A. Konoplev 

a03 = -(1/9)t*<P& is non-zero at whatever permissible values of the parameters E, y 
and t. According to catastrophe theory [14] this indicates that there exists such a non- 
degenerate non-linear smooth transformation of coordinates 

} (28) 
X”X’+a’/(2/11)+A20(Xr)~+Allxra’+A,2(a’)2+. . . , 

x -(UO~)”~(U’+A/(~~O~)), A=F-d~12/(2/1) 

and such a five dimensional neighbourhood (may be a small one) of the point 
(x*, a*, E*,  y*, t )  in which the potential (25) can be given approximately in new variables 
(28) by the form 

Y(a, x; E, y, t )  = c, + 2 x n 2  + darr2 - a”3, (29) 
where 

(30) 

(3 1) 

I c, = Y(a*, x*; E, y, t) - (a’)2/(4nl) + p(s’), 

p(s’)=A(~’)~ + U O ~ ( S ’ ) ~ ,  S’ = -b/(3a03), 

A” =IZI-dao3/(2Ar), d = A ( ~ o , ) - * / ~ ,  

1 A:, x A&, = u3,/(2X), A: x A:l = 0, 

AA2 %A:, =a12/(2A’). 

In (31) the superscript 0 corresponds to zeroth order in its expansion in ar. According to 
[14,15], formulae for the potential (29) and its coefficients (30) are written in first order 
of perturbation theory over the small value a’ and for the coefficients (31) of the 
transformation (28) it is fulfilled in the corresponding zeroth approximation without 
detriment for generality. 

It follows from equation (29) that the potential (21) of the model in the 
neighbourhood of the five dimensional point (x*, a*, E*,  y*, t*) whose coordinates 
satisfy equations (19), (20), (22) is imagined as a fold catastrophe over the variable a with 
perturbation of the non-universal type. We note that it follows from catastrophe theory 
[14] that the approximate potential (29) maintains all of the qualitative features of the 
initial function (1 l), at least locally, in the neighbourhood of the point (x*, a*, E*,  y*, t*). 

4.2. Swallowtail catastrophe 
In addition to the trivial solution (19); the system of equations (12) has a non-zero 

solution describing liquid-crystalline ordering. A separatrix of the model correspond- 
ing to the values a#O((P,) ZO) which satisfy equations (12), (18) has the parametric 
representation 

~(a,x)=ln [x/(l -x)] + 2(3)1/2a(P2)/(3U), 

y(a,x)=[31/2(x- 1)+ U]/(31/2X+ U), 

t(u,x)=(3”2x+ U)2V(P2)2X(1 -x)/3, 

We note-that the coordinates of the degenerate critical point (a, x) appear as surface 
parameters in equations (32) and (33). 
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Catastrophe theory of a nematic 103 

Let us choose a point (EO, yo, to) on the separatrix (32) so that the parameters a', xo 
corresponding to it would be in accord with the highest among possible catastrophes of 
the A, type. For that, according to the algorithm described in [14], we expand function 
(1 1) in a Taylor series in the neighbourhood of the point (a', xo) for arbitrary values of 
the parameters E, y, t (i.e. (E ,  y, t )  # (E', yo, to)) 

where 

(35) XI =x - xo, a' = a- ao. 

Since there are five unknown quantities including two state variables a', xo and three 
parameters EO, yo, to in the case under consideration then coefficients b, in expansion 
(34) are to be calculated, at least, up to fifth order inclusive. They have the form 
presented in Appendix 1 by equations (A 1HA 5). 

We calculate the eigenvalues of the stability matrix (16) 

1, = 1/WOz + ~ z o ~ - ~ ~ : ( b o z - ~ z o ~ 2 + ~ ~ ~ 1 1 1 ~ 2 ~  (36) 

and make a linear non-degenerate non-orthogonal transformation of coordinates 

[::I=[ -;ll :1][::]9 

where 

G =  bz0-21 .  (39) 

In the new variables z1 and z2 the mixed second order term in the expansion (34) 
vanishes and the latter becomes 

Y(ayx;E,y, t)=Y(ao,xO;E, y, t)+&lZ, +ctz, +az;+pz:  
G 

k z l  L j T O  
(i + J )  = k 

Coefficients in this equation up to fifth order inclusive are presented in Appendix 2 by 
equations (A 12HA 18). It follows from equations (12) and (18) that the eigenvalue from 
expression (36) and the coefficients pol, ct, S are zero at (E, y, t )  =(coy yo, to). 

According to [ 141 in the next step the second highest catastrophe of the model may 
be established using expressions (A 1HA 5), (A 13HA 18), (36) and (37) for the 
coefficients. With this end in view we compose a system of five equations including (12), 
(18) and two more equations ~ 0 3  =cO4=O (see equations (A 16) and (A 17)) 

2at=3(Pz)QZ, tR=(PZ)'(l -y)Q, bozbzo-b:l =O, 

- b o 3 G o  +bizb;obii -bzobzib:1 +b&1 =O, 
bo4bfo-b13bzob11 +b;obz,b:, +b40b:1 =O. 
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104 V1. K. Pershin and V. A. Konoplev 

A numerical solution of this system using equations (A 1HA 11) allows us to find a 
degenerate critical point 

u0 x 5-8, ( ( P 2 ) o  Xo.7), x0 w0.77, 

yo xO56, EO x 3.02, to x 0.079. 

Substitution of these numerical values into equation (A 18) for coefficient Co5 using 
equations (A 1HA ll), (36)-(39) shows that 

(42) i 
b05b:0-b14bl l % O  + b23b:lb20 - b 5 O b : 1 I ~ a O , x O , ~ O , y O , t )  #O, (43) 

(see formulae (A 18)). According to theorems from [ 141, the existence of the system’s (41) 
solution (42) for which the inequality (43) is valid indicates that the swallowtail 
catastrophe is realized for the potential (11) in the neighbourhood of the point 
(ao, xo, E’, yo, to). For the purpose of calculating its explicit analytic representation a 
non-linear transformation to new coordinates has to be performed 

k 
z;=z,+ez,+ 1 1 Aijz:zi, z;=z2, 

k 2 2  j , j T O  
( I  + J = k) 

(44) 

in which a precise value of the potential represented by the infinite series (40) may be 
approximated by its initial part 

Y(a, x; E, y, t )  x Y(a0, xo; EO, yo, to) + az; + n(z;)Z 

+ A(z;) + B ( z ; ) ~  + F(z;)~ + D ( z ~ ) ~  + E(z;)’, (45) 
containing terms only up to fifth order inclusive. Calculation of the coefficients in this 
equation is performed in Appendix 3. 

Next we introduce the shear transformation 

2’; = z; + a/(24, z; = E q z ;  - S),  
where 

S = - D/(5E). (47) 
Then taking into account this equation, the expression (45) is rewritten using the new 
variables (46) in the form 

‘€‘(a, X; E, 7, t )  x Co + Lz;’ + CZ; + bzi2 - d ~ 1 ; ~  + z;~, (48) 
where 

co = Y(a0, xo; E, y, t )  - a2/(4A) + P(s),  

P(S)  = AS + BS2 + F S 3  + DS4 + E S 5 ,  
(49) 

C =  E-’/5(A+2BS+3FS2+4DS3 +5ES4), 

b = E -215(B + 3FS + 6DS2 + 10ES3), 

d = K 3 ” ( F  + 4DS + 10ES’). 

Hence, it follows from this equation that this model potential is represented by the 
swallowtail catastrophe relative to the variable z; in the vicinity of the five dimensional 
point (a’, xo, .so, yo, to) whose coordinates (42) satisfy the non-linear equations (41). 
According to [ 141, the approximating potential (48) preserves all of the topological 
peculiarities of the function (1 1) in the neighbourhood of the point (42). 
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Catastrophe theory of a nematic 105 

4.3. Bifurcation and Maxwell sets of the model 
Using equations (A 1 H A  22), the equations (20), (21), (24), (27), (29), (30), (36)-(39), 

(42) and (46H50) allow us to calculate the bifurcation and Maxwell sets of this model 
locally in the vicinity of points (E*,y*,t*) and (&',yo, to) and equations (11)-(15), (18)- 
(22), (32), (33) and (36H40) allow us to do this globally in the whole control parameters 
space ((8, y, t ) }  by use of a numerical analysis. As a result all of the qualitatively different 
types of the system behaviour at varying thermodynamic and molecular parameters 
and the complete set of all the possible phase diagrams can be found. 

Since the determinant of the stability matrix (23) vanishes on fulfilling the equality 
(22) then using equation (20) the latter gives the explicit equation for the surface in 
coordinates (6, y, t )  being the separatrix of this model's fold catastrophe. The geometry 
of this separatrix is shown in figure 1 and its physical meaning lies in the description of 
the dependence of the lowest temperature boundary t* of the system's isotropic liquid 
phase absolute stability on the molecular length and flexibility. The geometry of the 
swallowtail catastrophe separatrix (48) in coordinates (6, y ,  t )  is shown in figure 2 (a). 

The results of numerical calculations of the Maxwell set are shown in figure 2 (b). 
Note that the presentation of two subsets { t* }  (see figure 1) and { t B }  (see figure 2 (a)) of 
the bifurcation set and Maxwell set { tM> (see figure 2 (b)) in different figures is performed 
for the purposes of visualization only. Projections of two ribs (curves 2 and 6) of the 
surface { t B }  and two ribs (curves 4 and 6) of the surface { t M }  onto the plane 6-y are 
shown in figure 2 (c). Calculation of the Maxwell set was fulfilled by comparison of the 
minimum values of the local potentials (29) and (48) and by means of that of minimum 
values of the global potential (11) corresponding to solutions of the systems of 
equations (12) and (19), (20). 

Analysis shows (see figures 1,2(a) and 3) that separatrix { t* }U{ tB}  surfaces divide 
the control parameter space { ( E ,  y, t ) }  into six open areas. According to catastrophe 
theory [14] each of them parametrizes qualitatively similar functions "(a, x) whose 
topology changes at the separatrix intersection when the control parameters change. In 
figure 3 qualitative forms of functions Y are shown which are parametrized by inner 
points of the Maxwell set for the section of the space { ( ~ , y , t ) }  by the plane 

Figure 1. Subset { t* }  of the bifurcation set of the fold catastrophe of the model of a nematic 
mesophase with internal degrees of freedom. 
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106 V1. K. Pershin and V. A. Konoplev 

t.102 

Figure 2. Subset {tB} of the bifurcation set of the swallowtail catastrophe (a) and the Maxwell 
set { tM} (b) of the model of a nematicmesophase with internal degrees of freedom. Curves 2, 
6 and 4,6 are projections of the surfaces {tB} and {t’}, respectively, on to the E--y plane (c). 

E = const =. c0(e= 6). Since the topological peculiarities of the free energy of the system is 
bound up with one variable (a” in equation (29) and zz in equation (48)) then in these 
figures and all of the function graphs reflecting a potential topology are, for the sake of 
visualization only, represented as depending on one variable. The meaning of the latter 
is, according to equations (28), (38), (44) and (46), close to the orientational order 
parameter. 

The question of phase transformations in the mesophase is solved on the basis of the 
analysis of the Maxwell set {t‘} which is shown in figure 3 by the continuous line. The 
bifurcation subsets {t”} and {t*} are shown in this figure by dashed and point-dashed 
lines, respectively. Figure shows also a qualitative shape of the potential Y not in points 
of the Maxwell set (the points and the corresponding graphs 1 , 5  8 in figure 3) only but 
also in points of intersection of the latter with the bifurcation set (the points and the 
corresponding graphs 2,4,6,7). As we can see from figure 3 at t = to, a phase transition 
associated with the disruption of long range orientational order is realized in 
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Catastrophe theory of a nematic 107 

0.4 0.6 Y 

Figure 3. Topology of the free energy of the model (graphs 1-8) in point of the Maxwell set 
(point 1-8 in the central part of the figure) in the case &=const >e0. Broken line in the 
centre shows the subset { tB} ,  broken line with points, subset { t * }  of the bifurcation set; 
solid line, the Maxwell set {t'}. 

monotonously decreased section 3 4 5 - 6  (see the graphs 4, 5 , 6 )  of the {t') set. The 
addition, at t = t,, an isostructural phase transition between nematic phases with 
different values of orientational (and conformational) ordering proceeds in its 
monotonously decreased section 3 4 5 - 6  (see the graphs 4, 5 , 6 )  of the {tM> set. The 
phase equilibrium points 2,4,7 are simultaneously bifurcation ones in which, besides 
phase transformations, the degeneracy of the potential Y with respect to corresponding 
metastable states takes place. A common point of three lines of the Maxwell set, the 
point 3 in figure 3, is a triple point of the system in which at t = to, = t,, three different 
phases (two orientationally ordered and one isotropic liquid) coexist simultaneously 
(see the graph 3 in figure 3). The point 6 in figure 3 of the t-y phase diagram is a critical 
end point in which the difference between low and high temperature partially ordered 
phases disappears. Note that the critical end point is the only point for the Maxwell set 
which is simultaneously the one for the bifurcation (i.e. it is a mathematical critical 
point in which the degeneracy of the potential with respect to thermodynamically 
stable states takes place). 

4.4. Phase diagrams of the mesophase with internal degrees of freedom 
The bifurcation set {tB> U{t*> and the Maxwell set {t*> whose understanding can be 

derived from catastrophe theory only allows us to build up all of the topologically 
different two dimensional phase diagrams of this model and to determine all of the 
possible paths for the system's evolution from the orientationally ordered state to the 
disordered state on changing thermodynamic and molecular parameters. 

Figures 4 and 5 show the qualitative shapes of the phase diagrams for the system in 
coordinates t-y at E = 3 -= and at E = 6 > E', respectively. The difference between them 
is that in the first case, at t = to,, an ordinary nematic-isotropic transition is realized and 
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m "1 
Figure 4. Dependence of the upper temperature boundary t** of the existence of the 

orientationally ordered state, lowest temperature boundary t* of the existence of the 
isotropic phase and the temperature tor of the orientational nematic-isotropic transition 
on the molecular flexibility parameter y at &=const. <to. 

t -102 

0.4 0.6 y 
Figure 5. Dependence of the upper temperature boundary t** of the existence of the 

orientationally ordered state, lowest temperature boundary t* of the existence of the 
isotropic liquid phase and, respectively, temperature to, of the orientational and t,, of the 
isostructural phase transitions on the molecular flexibility parameter y at E =  const <c0. 

in the second there is a range of parameters y for which the system passes through the 
intermediate state existing in the temperature range t,,< t < to, on its way to the liquid 
state. In addition, dependences of the lowest temperature limit t* of the isotropic liquid 
stability and of the upper temperature limit t** of the orientationally ordered state 
stability on the molecular flexibility are shown in figures 4 and 5. We note that the 
corresponding functions of these figures are topologically equivalent but in the plot 
t * * (y)  a sharp minimum is realized at E >  EO in contrast to a smooth one at E < E'. The 
latter is completely stipulated by the swallowtail catastrophe topology (see figure 2 (a)). 
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6 

5 

5 6 7 m 
Figure 6. Dependence of the upper temperature boundary t** of the existence of the 

orientationally ordered state, lower temperature boundary t* of the existence of the 
isotropic liquid phase, of the temperature of the orientational tor and isostructural t,, phase 
transitions and two temperature branches t: and tf: of the bifurcation subset {tB} on the 
effective molecular length E at y=const * y o .  The area of coexistence of the isostructural 
nematic phases is hatched. 

Figure 6 shows the qualitative shapes of the phase diagrams of the mesophase in 
coordinates t--E at y = 0.5 <yo. Corresponding changes in the topology of the potential 
on decreasing temperature (see the typical points and the graphs 1-13) and 
dependences of the critical temperatures t**, t*, to,, t,, and two branches ty and t': of the 
bifurcation subset { t B }  on the effective molecular length E are also shown in this figures. 
It is seen that the mesophase with a lower degree of order competes with the isotropic 
liquid (graphs 1-5 in figure 6). The partially ordered states compete with each other for 
the relative stability in the temperature range ty c t < t; (see the graphs 6-10 and the 
hatched area in figure 6). 

4.5. Temperature evolution of the model 
To analyse the temperature dependence of the mesophase order parameters we 

consider figure 2 (c) where projections of the { t B )  and i t M }  sets dividing the E-y plane 
into four areas I-IV are shown. Area I where y is small (and, hence, strong inequalities 
V,, B V,, 9 4, occur in formula (10)) corresponds to systems of conformationally 
flexible particles. Area 1V where y is close to 1 and the interaction parameters differ 
insufficiently in the folded and non-folded conformational states (V,, >, V,, 2 V,, in 
equation (9)) corresponds to systems of conformationally rigid molecules. The 
intermediate case of semiflexible particles is realized in areas I1 and 111. 
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110 V1. K. Pershin and V. A. Konoplev 

The temperature dependence of (P2) and x corresponding both to inner points of 
the areas I-IV (points 1 , 3 , 5 , 7  in figure 2(c)) and to points located at the boundaries 
between them (points 2, 4, 6 in figure 2(c)) are shown in figures 7-13. Numerical 
calculations were performed using equations (12)-(16) by considering the sign of the 
determinant of the matrix (17). The temperature t in figures 7-13 is normalized with the 
temperature to, of the transition into the isotropic liquid. In figures 7-13 the solid lines 
correspond to stable states of the system and the thin ones to its metastable, unstable 
and absolutely unstable states. Their corresponding counterparts are a global 
minimum, local minima, saddles and local maxima of the free energy surfaces whose 
reliefs are also shown for characteristic sets of temperature points in these figures. 

As we can see from figures 7 and 13, the analogous dynamics of the variation of the 
free energy is observed in areas I and IV. The free energy, in both cases, have one local 
minimum at t 2 t** (the graphs 6 ,7  in figure 7; the graphs 8,9 in figure 13) and at t = t* 
(the graph 2 in figure 7; the graph 4 in figure 13) and two local minima at t < t**, t # t* 
(the graphs 1,3-5 in figure 7; the graphs 1-3,5-7 in figure 13). Single valued transitions 
leading to the loss of long range orientational order are realized in these areas. For the 
latter ones, however, quantitative differences are observed in area I a transition into the 
isotropic phase occurs from the sufficiently more orientationally and conformationally 
ordered state (see central parts of figures 7 and 13) and at lower temperatures than in 
area IV (see also figure 3). 

Topologically equivalent potentials correspond to points of areas I1 and 111. These 
potentials have one local minimum at t>t** (the graphs 10, 11 in figure 9 and the 

Figure 7. Temperature evolution of our model parametrized by inner points of the area I in 
figure 2(c). Graphs 1-7 show the topology of the free energy in points 1-7 of the 
temperature axis, central part shows the temperature dependence of the orientational 
order (P2) (top) and confonnational disorder x (bottom) parameters at ~ = 6 ,  y=O.3. 
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graphs 12,13 in figure 11) and at t = t* (graph 2 in figure 9 and graph 8 in figure 1 l), two 
local minima at t < t!, t! < t < t** (t # t*) (graphs 1,3,4,8,9 in figure 9 and graphs 1,2,6, 
7, 9-1 1 in figure 11) or three local minima at t! < t < t i  (graphs 5-7 in figure 9 and 
graphs 3--5 in figure 11). It follows from a comparison of figures 9 and 11 that the main 
difference of areas I1 and I11 is that the partially ordered phase with the greater degree 
of disorder is metastable in area I1 and stable in area 111. 

Figures 8, 10, and 12 show the dependences (P2)(t) and x(t) (and also free energy 
reliefs at fixed temperatures) for points of the boundaries between areas I and 11, I1 and 
111, I11 and IV, respectively (the points 2,4,6 in figure 2 (c)). Anaiysis of these figures is 
similar to that given previously and so we only note their typical peculiarities. In curves 
(P2)(t) and x(t) shown in figures 8 and 12 points of inflection are observed in which the 
derivatives d(P2)/dt and dx/dt take infinite values, moreover in figure 12 this occurs in 
the area of orientationally ordered state. The mathematical nature of these peculiarities 
follows from the temperature behaviour of the potential (see graphs 1-9 in figures 8 and 
12). Thus, the 1-11 boundary (see figure 2 (c)) is a line where the intermediate metastable 
mesophase occurs; the 11-111 boundary is a line of triple points in which two liquid- 
crystalline and one isotropic liquid phase are stable simultaneously; the III-IV 
boundary is a line of critical points in which the isostructural phase transition between 
mesophases of similar symmetry but with different degrees of order degenerates into a 
second order transition. 

4.6. The evolution of ordering on changing the molecular parameters 
Figures 14.1 (a) and (b) and 14.2 (a) and (b) show the critical values of (P2) and x at 

the phase transition into the isotropic liquid ((P2),, in figure 14(a) and x,, in figure 
14(b)) and also critical values of these parameters in isostructural transitions at high 
order (P,),,infigure 14.2(a)andxC, infigure 14.2(b))andatlow order((P,),,infigure 
14.2 (a) and xc2 in figure 14.2 (b)) mesophases depending on the molecular flexibility at 
fixed values E = const < eo and E = const > eo, respectively. Figures 15.1 (a) and (b) and 
15.2(a) and (b) show the behaviour of the critical values (P2),,, (P2),, and (P2),, (see 
figure 15 (a) and xor, c,, and x,, (see figure 15 (b)) depending on the effective molecular 
length E at fixed values y = const < y o  and y = const > yo, respectively. The calculations 
were performed using equations (12H15) by considering the equality of the energy 
values (1 1) and (21) at the minima corresponding to coexisting phases. Note that figures 
14 and 15 emphasize a difference in the behaviour of flexible and rigid molecules and 
also indicate the specific behaviour of semiflexible molecules thus indicating a 
possibility of realization of discontinuous structural changes conserving the symmetry 
of the global system. 

5. Discussion 
The main result of the present paper is a demonstration of the fact that the free 

energy of our model is represented in the form of the superposition of two local 
potentials corresponding to fold and swallowtail catastrophes (see equations (6), (9), 
(1 l), (29) and (45) and figures 1-3). All of the physical conclusions obtained and 
discussed later are a consequence of this affirmation. 

5.1. Correlations with properties of individual mesogenic compounds 
Interpretation of the parameters E and y as the effective molecular length and 

flexibility allows us to consider them either as independent or as interconnected 
quantities. The first case relates to the search for correlations with a model with 
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Catastrophe theory of a nematic 115 

properties of individual mesogens. The latter, as we see from Q 4.5, can be convention- 
ally divided into four groups in conformity with the four areas of the &-y plane in figure 
2(c). Systems of flexible molecules correspond to the area I; those of molecules with 
characteristics similar to those inherent in rigid particles correspond to area IV and 
those of semiflexible molecules for which the formation of intermediate metastable and 
stable phases is typical correspond to areas I1 and 111, respectively. It has been shown 
that peculiar types of phase diagrams are inherent to these four cfasses of molecular 
systems and specific behaviour of the critical temperatures and values of the 
orientational order and conformational disorder parameters on changing the length 
and rigidity of the particles are also characteristic of them (see figures 3-15). Note 
especially that points in area I1 in figure 2 (c) parametrize systems with intermediate 
phases which do not manifest themselves under ordinary conditions in thermodynamic 
equilibrium but can be stabilized, for example, in a magnetic field which would change 
fundamentally the topology of phase diagrams [29]. Areas similar to I, I11 and IV 
shown in figure 2(c) had been first calculated in [18] but the curvature of the 
boundaries between corresponding areas is not correctly described there. In addition 
the area I1 whose significance becomes apparent from an investigation of systems in 
external fields [29] and the classification of phase diagrams is not given in [18]. 

X, 

Figure 14. Behaviour of the critical values of the orientational order (a) and conformational 
disorder (b) parameters versus the effective flexibility of particles with E c E'( 1) and E >e0(2). 
(Pz)o , ,  x,, are jumps of the orientational order and conformational disorder parameters, 
respectively, at the transition ofthe mesophase into the isotropic liquid. (P2),,, x,,; (P2)E2 ,  
x,, are critical values of these parameters at coexistence points of high and low ordered 
isostructural phases, respectively. 
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1.0- 

<P,> 
1 1 

p 
xc2 

4 6 

0.1- I 

I 0.8 

I I 

I I I I 
4 6 

X 

Figure 15. The behaviour of the critical values of the orientational order (a) and conform- 
ational disorder (b) parameters versus the effective molecular length with y < yo( 1) and 
y > ~'(2). (P2),,,, x,, are jumps of the orientational order and conformational disorder 
parameters, respectively, at the transition of the mesophase into the isotropic liquid. 
(P2) , , ,  x,,, (P2)c2 ,  xE2 are critical values of these parameters at coexistence of high and low 
ordered isostructural phases, respectively. 

A weak change of the orientational order parameter for increasing temperature 
with its large jump (P2) , ,  at the transition into the orientationally disordered state is 
characteristic for flexible particles (see figures 7 and 8). Such behaviour is observed in 
soaps (<:P2),, x O-9 [30]), lecitin ( (P2) , ,  x0.7-O.8 [31]), long chain linear liquid- 
crystalline polymers of the aromatic polyesters type ( (P2) , ,  x0.6 [lo]), in a number of 
short chain compounds with terminal ( (P2) , ,  x0.7 [32]) and middle ( (P2)0r  ~ 0 . 5  [33]) 
flexible fragments and has been noted previously in theoretical papers [16-201. A 
strong change of the orientational order parameter with increasing temperature with a 
low jump at the transition into the isotropic liquid is characteristic of rigid particles (see 
figure 13). Such behaviour has been observed experimentally for many short chain 
liquid crystals which are well described by the approximation of rigid rods 
( (PJ, ,  x0.3-O.4 [l]) and also in comb-like liquid-crystalline polymers of the 
polysiloxane type where mesogenic groups which are joined to the main chain by 
flexible spacers ( (Pz ) , ,  x 0.34.4 [34]) are responsible for the orientational ordering. 

It has been shown [35-371 that in homologues of 4-n-alklyoxybenzoic acids with 
n = 7, 8, 9 and 10 a specific temperature point is found in the nematic state stability 
range where a sharp long range orientational order jump occurs which is indicative of 
the first order phase transition without a change of the global symmetry of the system. 
According to ideas of authors of papers [36,37], one of these phases, the high 
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temperature one, is an ordinary nematic and the other phase, the low temperature one, 
is a skewed cybotactic nematic. Note that the difference in the intramolecular ordering 
which manifests itself in the degree of organization of supermolecular order (mesophase 
cluster formation) can be the basis of the difference between the high and low 
temperature nematic phases. The supposition is confirmed by X-ray and NMR 
experiments [38-391 on homologues of aromatic polyesters with an even number of 
carbon atoms in the spacers which possess a high level of orientational order bound up 
with specific conformations and which at the same time satisfy the criteria produced for 
the cybotactic nematic model of short range intramolecular order [26,27]. 

Concerning the temperature behaviour of the X-ray scattering intensity, Furuya 
and Mitsui have found [40] a high temperature phase transition in the liquid- 
crystalline state of lipid mono and bilayers of pure lecithins and also of their mixtures. 
The authors of the paper [41] have found that the temperature evolution of these lipid 
systems proceeds according to the following scheme: a jump in the orientational order 
parameter from ( P z ) c ,  x0.7 to (P2) , ,  w 0.3 takes place at the isostructural transition 
between liquid-crystalline phases with its following insignificant reduction on increas- 
ing temperature and with a second jump into the isotropic liquid which corresponds to 
the dependence ( P 2 ) ( t )  shown in figure 11 (cf. figure 10 in [41] and figure 2 (b) in [ 193). 
In addition, on the basis of the behaviour of longitudinal and transversal rotational 
diffusion coefficients a conclusion can be made that at the isostructural transformation 
a more noticeable conformational disordering jump is observed than at the transition 
into isotropic liquid. The latter corresponds to what has been shown by the dependence 
x(t)  in figure 11. 

5.2. Critical manifolds and phase diagrams of the model in cylindrical coordinates 
Figures 4-6 and 14-15 show the calculated dependences of the transition 

temperatures, stability boundaries of the phases and critical values of the order 
parameters versus the effective rigidity y and the molecular length E (cf. figures 3 and 4 in 
[18]). To compare these results (mostly, at a qualitative level) with the experimental 
dependences of the analogous physical values on the molecular flexibility found 
generally from homologous series data it should, necessarily, be taken into account that 
the values E and y are functionally connected. It is clear from physical considerations 
that increase in the molecular length is to be followed by that of their flexibility and 
hence, the function ~ ( y )  should decrease monotonously in the most general situation. 
Such a functional dependence of E on y had been discussed in [18,19] in which, 
however, questions fundamental from the point of view of the inner logic of the theory 
had been left open: should in this case the phase diagrams predicted by the model (see 
figures 4-6) and the behaviour of critical values (see figures 14 and 15) change? and what 
type of changes are to be expected? 

Beyond the limits of catastrophe theory the solution to this problem consists in 
recalculating the phase diagrams and critical values dependence of the orientational 
order and the conformational disorder parameters with specific concrete functions ~ ( y ) .  
But even in this case it is not perfectly clear that all of the possible, in principle, versions 
are taken into account. Note that such recalculations were not reported in [l8, 191 and 
it had been implicitly supposed there that the account of the interrelation between E and 
y can lead only to insignificant modifications of the phase diagrams withoug changing 
qualitative conclusions. Catastrophe theory allows us to substantiate that such a point 
of view is not correct and to solve the problem adequately and completely in terms of a 
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topological analysis. If we analyse figures 14 and 15 from the point of view of 
catastrophe theory then it becomes clear that curves being sections of physical critical 
manifolds of our model in corresponding coordinates are shown in these figures. It 
should be recalled that physical and mathematical critical manifolds differ by the fact 
that the former are given by equations (12) together with the equilibrium conditions (i.e. 
by equalities of free energies of the different phases) and the latter are determined by the 
same equations but combined with the stability conditions (18). Here only physical 
critical manifolds are considered. Their three dimensional pictures reconstructed 
according to the corresponding plane sections (see figures 14 and 15) are shown in 
figures 16-19 (a) and (b) in coordinates (E,  y,  ( P J )  and (E, y, x), respectively. We note that 
the characteristic form of the critical manifolds as surfaces of the fold type is due to the 
realization of the swallowtail catastrophe in the model [13,14]. 

Without performing numerical calculations it follows from figure 2 that there are 
four fundamentally different versions of the behaviour of monotonically decreasing 
functions E(Y)  which are determined by the location of the curves with respect to the 
boundaries between areas I-IV in the plane of the variables E-y: (1) the curve E(y) 
does not intersect the boundaries of areas I-IV (see figure 16), (2) the curve ~ ( y )  crosses 
all the boundaries (see figure 17), (3) it enters area I11 from the side of area I1 crossing 
boundaries between areas I and 11, I1 and I11 (see figure (18), (4) the curve ~ ( y )  enters area 
I11 on the side from area IV crossing the boundary between areas I11 and IV (see figure 
19). In figures 1 6 1 9  in the three dimensional coordinate systems (E,  y, ( P 2 ) ) ,  (E, y, t)  
cylindrical surfaces with guides given functionally E = ~ ( y )  correspond to these curves. 
Hence, it follows immediately that for four cases described the two dimensional phase 
diagrams of the model and the dependences of the critical values of the orientational 

A! OC I 

2 
t .10 

Figure 16. Critical values of the orientational order (a) and conformational disorder (b) 
parameters and phase diagram (c) of our model in cylindrical coordinates for the first 
characteristic version of the dependence 47). 
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Catastrophe theory of a nematic 119 

Figure 17. Critical values of the orientational order (a) and conformational disorder (b) 
parameters and phase diagram (c) of our model in cylindrical coordinates for the second 
characteristic version of the dependence ~ ( y ) .  

Figure 18. Critical values of the orientational order (a) and conformational disorder (b) 
parameters and phase diagram (c) of our model in cylindrical coordinates for the third 
characteristic version of the dependence ~ ( y ) .  
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120 V1. K. Pershin and V. A. Konoplev 

Figure 19. Critical values of the orientational order (a) and conformational disorder (b) 
parameters and phase diagram (c) of our model in Cylindrical coordinates for the fourth 
characteristic version of the dependence ~ ( y ) .  

order and conformational disorder parameters on the length and flexibility of particles 
are realized in corresponding cylindrical sections of the Maxwell set (see figures 16 ( c t  
19(c)) and critical manifolds <P&, y) (see figures 16(aH19 (a)) and X(E, y) (see figures 
16(bFlY(b)). It follows from comparison of figures 16-19 and 4-6, 14 and 15 that the 
topology of the curves in cylindrical coordinates is equivalent to that of the 
corresponding curves in orthogonal plane coordinates. Therefore, all of the qualitative 
conclusions about the phase diagrams of the model (see figures 3-6) and the behaviour 
of the critical order parameters (see figures 14 and 15) remain valid but the following 
circumstances should be kept in mind they belong to certain types of the dependences 
~ ( y )  (see figures 16(bt19 (b)). Two conclusions follow from this. 

First, taking into account that there should be specific interconnections between the 
molecular length and flexibility in homologous series of mesogenic compounds, in a 
number of cases homologous series of even very similar compounds (close dependences 
for ~ ( y ) )  can essentially differ by critical parameters (cf. figures 16(a) and (b)-19 (a) and 
(b)) and be characterized by topologically different phase diagrams (for example, in 
temperature-number of carbon atoms in aliphatic tails of particles coordinates) (see 
figures 16 (ct-19 (c). Similar effects relevant to transitions of the plastic crystal-liquid 
crystal type take place, for example, for different metal ions in chlorine- 
metalalkylammonium compounds [42]. In this aspect, steric effects of substituents in 
conjugated mesogens which lead to an essential modification of the phase diagrams 
including the formation of intermediate phases are of interest in liquid crystal research 
C431. 

The second conclusion bears a relation to [18] in which a E ( Y )  dependence 
corresponding to figure 17 is considered and the results are interpreted in accord with 
graphic information similar to that shown in figure 15 which is, apparently, not correct 
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(cf. figures 17(a) and (b) and 15). As a consequence, for example, the terminal critical 
point was not found in [19] which is really absent in the phase diagrams of figures 6, 
18 (c) and 19 (c) but is available in the phase diagrams shown in figures 17 and 19. In this 
connection the experimental paper [44] attracts attention in which a line of 
isostructural transformations quasibilayer-bilayer smectic terminating in a critical 
point similar to that found in the phase diagrams of figures 5 and 17(c) occurs in the 
temperaturexoncentration plane for mixtures of cyano compounds. It is to be taken 
into account here that a change of the molecular flexibility corresponds to that of the 
relative concentration of the components. This substantiates a supposition that for the 
cyano compounds studied in [44] the translational order of the smectic phase 
contributes mainly to the formation of the optimum combination of the particles 
flexibility and orientational order of the system and the isostructural transition 
between quasibilayer-bilayer states, by analogy to our results, is induced by 
conformational disordering of the aromatic fragments of molecular dimers paired by 
means of the interaction of oppositely directed dipoles of the cyano groups. We also 
note a theoretical paper [45] in which a phase diagram with the critical end point in the 
line between nematic phases of comb shaped liquid-crystalline polymers is built. In this 
case a corresponding isostructural transformation can be intepreted only from the 
point of view of the conformations of the main chain and flexible spacers by which 
mesogenic fragments are attached to it. 

6. Conclusion 
Catastrophe theory provides a perspective trend in the study of molecular gradient 

systems stability which determines a strategy for solving multiparametric physical 
problems. Catastrophe theory has usually been used in physical developments for 
illustrative purposes only and a consideration has been fulfilled using examples of the 
canonic one parametric, lowest order catastrophes taken from Thom’s famous table 
[14]. In addition, catastrophe theory calculations are, in their meaning, close to the 
phenomenologic (Landau) descriptions, which is certainly important in itself but does 
not give a possibility of their direct use in statistical thermodynamics. Our paper is an 
attempt to apply catastrophe theory to the study of non-trivial thermodynamic 
potentials in statistical mechanical problems involving liquid crystals. We attempt now 
to underline some results bound up with the mathematical aspects of the methods 
applied. 

(i) It is shown that not one but a greater number of catastrophes (in our case these 
are the fold and swallowtail ones) can arise in a physical model which leads to 
the non-standard separatix structure (see figures 1-3) and, hence, to non- 
standard phase diagrams (see figures 2-6). 

(ii) A catastrophe with a non-universal unfolding appears to be a physically 
significant one. This one is a fold in the case under consideration and, 
moreover, the non-universal perturbation (unlike the universal one described 
by Thom’s table of elementary catastrophes [13]) does not lead to a potential 
topology change on passing through a specific point but determines a 
thermodynamic stability type of the most symmetric (isotropic liquid) state 
(see [14] and figures 3-6). 

(iii) Not each of the catastrophes separately but their interaction (or superposition) 
in control parameter space determines the themodynamic potential topology 
and, hence, the behaviour of the system. In the case considered this merely 
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means that all of the qualitative results of our model can be obtained on the 
basis of the investigation of two simple polynomials (29) and (44). While 
constructing the free energy graphs (see figures 3-13), graphs of these 
polynomials should be combined in such a manner that the topology of the 
potentials of the fold and swallowtail catastrophes is preserved. 

(iv) In connection with a previous result we emphasize one more non-trivial 
circumstance bound up with the ideology of a popular theory of phase 
transitions, namely the Landau description which is a particular case of 
catastrophe theory. The Landau theory based on the expansion of the free 
energy in a power series of order parameter proceeds from the cusp 
catastrophe in the simplest case. In addition, the fold and swallowtail 
catastrophes are excluded from consideration of the Landau theory on the 
ground that they either do not allow us to model a positive equilibrium order 
parameter value of a low symmetry phase or do not describe correctly the 
stability conditions of a high symmetry phase. However, as we have shown, 
though each of the catastrophes apart leads to the non-physical topology of 
the thermodynamic potential, in contrast, their superposition in the control 
parameter space does determine a physically reasonable topology of the 
potential. (In this context a physically reasonable topology of the potential 
means the following asymptotic behaviour: Y(x)= + co at llxll am, where x is 
a multidimensional order parameter.) It can be supposed that a superposition 
of catastrophes is a typical situation in complex statistical mechanical models; 
however, from the viewpoint of Landau theory it has never been explicitly 
considered earlier, though, apparently, it could broaden the range of 
physically significant phenomenological models. 
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h40 =5/27+ 13/(18a)+ 19/(12a2)-63/(8a3), 

h41= -7/27 + 14/(3a)-23/(2a2)-35/(2a3)+ 945/(16a4), 

h42 = 70/27 - 25/(3a) - 57/(2a2) + 255/(4a3), 

h43 = - 40/27 - 20/(9a) + 176/(3a3), 

h44 = 160/27 + 80/(3a), 

h45 = 128/27, 

In equations (A 1HA 5 )  (Pz)b, (P&, . . . , (P2}i5)  are derivatives of the orientational 
order parameter from equation (13) with respect to variable a up to fifth order inclusive 
at the account of equation (14) in the point a = ao #O. In the numerical analysis of the 
problem, it is convenient to use equations expressing these derivatives through the 
quantity a (see equation (13)) and the order parameter. From equations (13) and (14) we 
find 

> 

i +  1 

j = O  
(PZ)‘”= hij<P,}j, i=  1 ,... ,5. 

where hij are 

i h10 = 1/33 
hl = 1/3 - 3/(2a), 

h1z = -2/3, 

h,, = 1/9- 1/(2a), 

hzl = - 1/3- l /a+ 15/(4a2), 

hzz = - 2/3 + 3/a, 

h Z 3  = 8/9, 

h30 = - 1/9 - 1/(3a) + 7/(4a2), 

h31= -5/9+ 13/(6a)+ 15/(4a2)- 105/(8a3), 

h32=2/3+ 14/(3a)-ll/a2, 

h,, = 16/9 - 8/a. 

h34 = 16/9, 
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124 V1. K. Pershin and V. A. Konoplev 

hso = - 7/8 1 + 14/(9a)-41/(9a2) - 9/a3 + 693/( 16a4), \ 

h51= 147/81- 79/(18a)- 207/(6a2)+ 923/(12a3) + 1575/(16a4)- 10395/(32a5), 

h52  =2/27- 119/(3a) +242/(3a2) + 838/(6a3) - 3375/(8a4), 

h 5 3 =  - 1040/81+280/(9~)+ 1970/(9a2)- 1399/(3a3), 

h54 = 80/27 + 1040/(9a) - 304/a2, 

h 5 5  = 640/27 - 960 / (9~) ,  

h56 = - 1280/81. J 

’ ( A l l )  

Appendix I1 
In this Appendix formulae for the coefficients cij  in the potential representation (40) 

are calculated 
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Appendix 111 
We calculate the coefficients in equations (45) with the help of perturbation theory 

for the coefficient a (see equation (A 13)) being infinitely small in the limit 
( ~ , y , t ) + ( ~ ~ , y ~ , t ~ ) .  According to [14,15] it is sufficient to find the coefficients 1, 
A, B, F, D of the polynomial (45) in first order of perturbation theory over a and the 
coefficient E in (45) and the coefficients of the transformation (44) in zeroth order. In 
addition, all of the topological features of the potential (1 1) are retained, at least locally 
in the neighbourhood of the transition (42). As a result we have 

I 1 x 10 + E l '  = p- aA;,, A x AO + aA' =pol + abO, 

B x Bo + aB' =6-aA!2, F x F o  + =cO3 + a(AgZAy1 -Ag3, 

D x D o  +aD'=(4pc,,-~~~)/(4p) 

+a[-AE4+Ay1&3 +A:2Ay2-Ai0(AE2)2 -A;O(Ay1)'], 

E w Eo = 1/(4p2)[4p2~,, - 2p~12~13 + ~ 2 1 ~ ? 2 ] ,  
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